中教数据库 > 江苏科技大学学报(自然科学版) > 文章详情

利用特征扰动的高维小样本数据子空间学习

更新时间:2023-05-28

【摘要】在基因微阵列、文本数据分析、图像识别等领域,数据存在着高维性、高噪声、类别不平衡等问题,给深入准确挖掘高维小样本数据中所蕴含的有用知识和特征选择带来了极大困难,对高维小样本数据的分类学习性能带来了消极影响.为了获得具有高效分类性能的特征,利用特征扰动策略,定义了基准属性及基准属性空间,构建了利用具有差异性的多个特征子空间.在此基础上,构建了利用特征扰动策略的高维小样本数据的特征选择算法.在8个数据集上与其他7个特征选择算法进行实验结果对比,表明了所提算法的有效性.

【关键词】

1829 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号